Synthetic data generation by probabilistic PCA
نویسندگان
چکیده
منابع مشابه
GENERATION OF SYNTHETIC EARTHQUAKE RECORDS BY ARTIFICIAL INTELLIGENCE TECHNIQUES
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil ty...
متن کاملExtensions of probabilistic PCA
Principal component analysis (PCA) is a classical data analysis technique. Some algorithms for PCA scale better than others to problems with high dimensionality. They also differ in the ability to handle missing values in the data. In our recent paper [1], a case is studied where the data are high-dimensional and a majority of the values are missing. In the case of very sparse data, overfitting...
متن کاملSparse Submodular Probabilistic PCA
We propose a novel approach for sparse probabilistic principal component analysis, that combines a low rank representation for the latent factors and loadings with a novel sparse variational inference approach for estimating distributions of latent variables subject to sparse support constraints. Inference and parameter estimation for the resulting model is achieved via expectation maximization...
متن کاملProbabilistic Relational PCA
One crucial assumption made by both principal component analysis (PCA) and probabilistic PCA (PPCA) is that the instances are independent and identically distributed (i.i.d.). However, this common i.i.d. assumption is unreasonable for relational data. In this paper, by explicitly modeling covariance between instances as derived from the relational information, we propose a novel probabilistic d...
متن کاملGlobally Sparse Probabilistic PCA
With the flourishing development of highdimensional data, sparse versions of principal component analysis (PCA) have imposed themselves as simple, yet powerful ways of selecting relevant features in an unsupervised manner. However, when several sparse principal components are computed, the interpretation of the selected variables may be difficult since each axis has its own sparsity pattern and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ??????
سال: 2023
ISSN: ['2586-4629', '2765-5407']
DOI: https://doi.org/10.5351/kjas.2023.36.4.279